
Software Supply Chain Security: A Multi-faceted Approach to

Mitigation

1 Abstract

This paper proposes a comprehensive approach to software supply chain security, drawing upon insights
from recent research and highlighting the critical need for proactive, data-driven strategies. We address
the multifaceted challenges in securing the software supply chain, the limitations of current approaches,
and how recent research contributes to the solution space.

2 Problem Statement

The modern software landscape relies heavily on reusable components, creating a complex software
supply chain. This interconnectedness introduces significant security risks, as vulnerabilities in up-
stream components can propagate to numerous downstream projects. The increase in software supply
chain attacks is alarming, with malicious actors injecting vulnerabilities into open-source software,
compromising build and deployment pipelines. The following factors further complicate this problem:

• Widespread use of open-source software: A vast majority of codebases contain open-source
software. The sheer volume and complexity of these dependencies make it challenging to identify
and remediate vulnerabilities.

• Lack of transparency: Organizations often lack complete visibility into the components and
dependencies within their software, hindering their ability to assess and manage risk.

• Difficulty in choosing secure dependencies: Developers lack reliable metrics and processes
to select secure dependencies and often struggle with the overwhelming number of vulnerabilities
identified by software composition analysis tools (SCA).

• Challenges in updating dependencies: Concerns about breaking changes and the time
involved often lead to delayed updates, leaving systems vulnerable. Automated patching without
human intervention is not always accepted.

• Malicious commits and packages: Threat actors intentionally inject malicious code through
commits and by creating malicious packages. Detecting these malicious activities is difficult due
to obfuscation, stolen credentials, and impersonation.

• Abandoned and orphaned dependencies: Open-source projects are often maintained by
volunteers, and the abandonment of projects can lead to vulnerabilities that are not addressed,
leaving projects relying on them exposed. Vulnerability fixes may not be propagated to previous
versions, resulting in residual vulnerabilities and orphaned vulnerabilities that happen through
copying dependencies.

• Evolving attack vectors: Attackers are constantly finding new ways to exploit vulnerabilities
in the software supply chain, including build infrastructure and human factors.

• Inconsistent vulnerability data: Public vulnerability databases often lack complete informa-
tion, including patch links and CVE identifiers.

• Lack of standardization: A lack of a standardized format for data interchange across multiple
vulnerability and ecosystem API databases complicates the tracking of dependencies and hinders
collaboration between different vulnerability databases.

1



3 How Previous Works Fit into the Picture

Research has explored many facets of this complex problem, providing insights into effective mitigation
strategies. The sources in this proposition highlight the following key areas:

• Dependency Management:

– Metrics for dependency selection: The OpenSSF Scorecard assesses open-source project
security , and research is being conducted on developing metrics, like dependency popular-
ity, contributor reputation, and maintenance [2]. However, the effectiveness of these metrics
needs to be improved.

– Dependency update practices: Studies characterize dependency update practices in
different ecosystems , proposing metrics like Mean Time To Update (MTTU) and Mean
Time To Remediate (MTTR), and explore the impact of dependency specifying strategies
(pinned vs. floating versions) on these metrics [2].

– Detection of malicious packages: Researchers have developed methods for detecting
malicious packages using rule-based, heuristic, differential analysis, machine learning, and
Large Language Model (LLM) approaches. Datasets of malicious packages have been created
for research purposes [5].

– Vulnerability remediation: Tools such as Dependabot and Renovatebot help automate
dependency updates.

– Vulnerability databases: Public vulnerability databases such as the National Vulnera-
bility Database (NVD) and Open Source Vulnerability (OSV) [2] aggregate vulnerability
information. Research also focuses on tools to find missing patch information [5].

• Software Bill of Materials (SBOM):

– SBOM Importance: The generation of an SBOM is essential for tracking third-party
components to enable transparency and visibility [5].

– SBOM Generation Challenges: There are issues with SBOM generation, including
deficiencies, a lack of generalizability, and incompatibility of standards. Research focuses
on improving the quality of SBOMs and tools for generating them [5].

• CI/CD pipeline security: Research focuses on integrating security tools into CI/CD pipelines,
addressing vulnerabilities introduced through the automation of building, testing, and deploy-
ment [5].

• The role of LLMs: While LLMs can be used to automate tasks like vulnerability detection
[13-19] and code repair, there are risks associated with their use in software development. LLMs
can be used as an attack vector and can introduce new vulnerabilities into the software supply
chain [5].

• Security Controls:

– Taxonomy of Challenges: A taxonomy has been developed for the challenges of imple-
menting security controls [4], highlighting issues such as the subjectivity of human inter-
vention, false positives, and a lack of context.

– Control Effectiveness: Research focuses on the effectiveness of security controls in pre-
venting attacks, and suggests that regular patching and attack surface management are the
most effective interventions. A security control metric suite has been developed to measure
the degree of mitigation by security controls against attack techniques [3].

• Sensitive API Usage:

– Security-sensitive API lists: The creation of lists of security-sensitive APIs is an ap-
proach for assessing package security risk, with researchers compiling a list of 219 Java
security-sensitive APIs.

2



– Heatmap visualization: Heatmap visualizations can be used to convey the use of security-
sensitive APIs in different packages [1].

• Human Factors: Research has identified the need to support developers, recognizing that many
companies have basic policies for including external code, but developers need more resources to
audit and secure components [1]. Ethical considerations in security research, including privacy
and consent, are also explored [5].

4 Discussion and Recommendations

Based on these findings, the following recommendations are proposed:

• Prioritize a multi-faceted approach: Addressing software supply chain security requires a
multi-layered approach, combining technical solutions with policy and process improvements.

• Improve Dependency Management:

– Develop and adopt robust metrics: Focus on developing and using more comprehensive
and accurate metrics for evaluating the security of dependencies beyond just the OpenSSF
Scorecard.

– Promote proactive dependency updates: Encourage developers to adopt strategies
for timely dependency updates, providing better tooling and support, and emphasizing the
need to update to remediate vulnerabilities.

– Enhance malicious package detection: Improve existing tools for detecting malicious
packages with more advanced machine learning techniques and cross-language analysis.

• Increase transparency through SBOMs:

– Standardize SBOM generation: Work towards standardizing the SBOM generation
process and improving the quality and reliability of SBOMs.

– Automate SBOM generation: Develop more automated ways to generate SBOMs for
programs that utilize multiple languages.

• Secure CI/CD pipelines: Integrate security tools into every stage of CI/CD pipelines, specif-
ically addressing the vulnerabilities introduced through automation.

• Harness LLMs responsibly: While LLMs offer benefits in software development, be aware of
potential risks. Implement thorough reviews and mitigate risks like prompt injection.

• Improve vulnerability data: Address the gaps in vulnerability databases by developing tools
to backfill missing patch information and encourage greater data standardization.

• Enhance control implementation: Treat control implementation as a continuous process,
not just a checklist. Prioritize tackling individual challenges, recognizing that addressing one
issue might worsen another.

– Use a risk-based approach: Prioritize controls based on their potential to mitigate
attacks effectively, considering factors such as technique and tactic coverage, redundancy,
and impact reduction.

– Adapt security measures: Emphasize proactive and preventive controls in addition to
reactive and detection-based controls.

– Recognize the limits of automated systems: Acknowledge the need for human inter-
vention, while also seeking ways to mitigate risks introduced by human factors.

• Promote collaboration and knowledge sharing: Encourage greater collaboration between
researchers, practitioners, and open-source maintainers. Sharing knowledge about security in-
cidents including ineffective control implementations can help the community learn from past
mistakes.

• Embrace ethical practices: Adhere to ethical guidelines, particularly when conducting re-
search that involves human participants or sensitive data.

3



5 Conclusion

Software supply chain security requires continuous vigilance and a proactive approach. By combining
the insights from the research discussed, and following the recommendations made here, we can move
towards a more secure and resilient software ecosystem. The key is a data-driven approach to decision-
making that incorporates insights on the threat landscape and the effectiveness of defensive measures.

References

[1] Imranur Rahman, Ranidya Paramitha, Henrik Plate, Dominik Wermke, and Laurie Williams. Less
is more: A mixed-methods study on security-sensitive api calls in java for better dependency
selection, 2024.

[2] Imranur Rahman, Nusrat Zahan, Stephen Magill, William Enck, and Laurie Williams. Character-
izing dependency update practice of npm, pypi and cargo packages, 2024.

[3] Md Rayhanur Rahman, Imranur Rahman, and Laurie Williams. If you cannot measure it, you
cannot secure it. a case study on metrics for informed choice of security controls, 2024.

[4] Md Rayhanur Rahman, Brandon Wroblewski, Mahzabin Tamanna, Imranur Rahman, Andrew
Anufryienak, and Laurie Williams. Towards a taxonomy of challenges in security control imple-
mentation. In Proceedings of the 40th Annual Computer Security Applications Conference, 2024.

[5] Laurie Williams, Giacomo Benedetti, Sivana Hamer, Ranindya Paramitha, Imranur Rahman,
Mahzabin Tamanna, Greg Tystahl, Nusrat Zahan, Patrick Morrison, Yasemin Acar, Michel Cukier,
Christian Kästner, Alexandros Kapravelos, Dominik Wermke, and William Enck. Research direc-
tions in software supply chain security. ACM Trans. Softw. Eng. Methodol., December 2024. Just
Accepted.

4


	Abstract
	Problem Statement
	How Previous Works Fit into the Picture
	Discussion and Recommendations
	Conclusion

