
SecureImgStego: A Keyed Shuffling-based Deep
Learning Model for Secure Image Steganography

Trishna Chakraborty
University of California, Irvine

trishnac@uci.edu

Imranur Rahman
North Carolina State University

irahman3@ncsu.edu

Hasan Murad
Chittagong University of Engineering and Technology

muradbuetcse13@gmail.com

Md Shohrab Hossain
Bangladesh University of Engineering and Technology

mshohrabhossain@cse.buet.ac.bd

Shagufta Mehnaz
The Pennsylvania State University

smehnaz@psu.edu

Abstract—Steganography ensures secure transmission of dig-
ital messages, including image steganography where a secret
image is hidden within a non-secret cover image. Deep learning-
based methods in image steganography have recently gained
popularity but are vulnerable to various attacks. An adversary
with varying levels of access to the vanilla deep steganography
model can train a surrogate model using another dataset and
retrieve hidden images. Moreover, even when uncertain about
the presence of hidden information, the adversary with access to
the surrogate model can distinguish the carrier image from the
unperturbed one. Our paper includes such attack demonstra-
tions that confirm the inherent vulnerabilities present in deep
learning-based steganography. Deep learning-based steganogra-
phy lacks lossless transmission assurance, rendering sophisti-
cated image encryption techniques unsuitable. Furthermore, key
concatenation-based techniques for text data steganography fall
short in the case of image data. In this paper, we introduce
a simple yet effective keyed shuffling approach for encrypting
secret images. We employ keyed pixel shuffling, multi-level block
shuffling, and a combination of key concatenation and block
shuffling, embedded within the model architecture. Our findings
demonstrate that the block shuffling-based deep image steganog-
raphy has negligible error overhead compared to conventional
methods while providing effective security against adversaries
with different levels of access to the model. We extensively
evaluate our approach and compare it with existing methods in
terms of human perceptibility, key sensitivity, adaptivity, cover
image availability, keyspace, and robustness against steganalysis.

I. INTRODUCTION

In this modern era, ensuring privacy and security in com-
puter and internet usage is a significant challenge. Steganog-
raphy, the technique of concealing a secret message within
a non-secret image, has emerged as a successful method
for secure transmission of confidential digital content over
unreliable media. It has a wide range of applications, including
military communications, protecting authorship information,
and preventing data alteration. For a basic introduction to
steganography systems and their applications, refer to [1], [2].

Prior research. The traditional approaches for steganog-
raphy [3], [4] utilize different properties of images, e.g.,
histogram, texture, pixel value difference, and least significant
bits. Recently, deep learning-based approaches have become
popular among practitioners to design a pipeline for the hiding
and revealing processes of steganography [5]–[7]. Baluja [5]
proposes the use of convolutional neural networks (CNN)
to develop these hiding and revealing processes. The con-

volutional neural network (CNN) extracts high-level features
from the secret image and embeds these features within the
cover image. It has been found that deep learning-based
steganography technique has significantly high capability of
hiding more bits-per-pixel (bpp) secret data within the carrier
image compared to the traditional approaches. Generative ad-
versarial networks (GANs) have also been used for designing
steganography models [8].

Limitations of existing approaches and challenges. De-
spite advancements in embedding secret messages within
carrier images, traditional steganography techniques can be
identified through statistical analysis [9], [10]. Deep image
steganography methods are also vulnerable to adversaries
retrieving secret images from carriers, even without access
to the original training dataset. This makes existing deep
image steganography models susceptible to attacks, including
man-in-the-middle (MITM) attacks. Combining cryptographic
techniques with steganography as a pre-processing step has
been attempted to address these security concerns [11]–
[15]. However, previous approaches like fixed shuffling pre-
processing [12] lack support for secure steganography with
multiple sender-receiver pairs and are vulnerable to white-
box attacks. Additionally, applying advanced image encryp-
tion techniques directly to deep learning-based steganography
models is challenging due to potential loss in carrier image
transmission. Li et al. [11] introduced a key concatenation-
based encryption technique for secure transmission of text data
in deep steganography networks, but it is inadequate for image
data. Therefore, the limited applicability of existing research
in the image domain presents a significant challenge for secure
image steganography.

Problem and scope. Motivated by the simultaneous re-
quirements of security and utility of image steganography,
in this paper, we address the following research question:
Can we build a deep convolutional neural network (CNN)-
based image steganography model capable of incorporating
key for each <sender, receiver> pair to ensure security
against MITM attackers while also preserving the utility of
the model in terms of reconstruction of the secret image?
In response to this, we design and develop SecureImgStego,
a deep learning-based model for image steganography that
embeds keyed shuffling encryption techniques for security



Sender 

Adversary 

Receiver Carrier Image Cover Image 

Secret Image 

Decoded   

Secret Image 

Secret Key 

Random key 

Decoded   

Secret Image 

Encoder Encoder Decoder Decoder 

Secret Key 

Fig. 1. Sender and receiver share a secret key to encode and decode the secret
image, respectively. An adversary with access to the decoder (or, a surrogate
model of the decoder) may attempt to decode the carrier image with a random
key.

while preserving the utility of the model with negligible
overhead when compared to the vanilla steganography model
[5], i.e., a stenganography model without any keyed encryp-
tion. Moreover, we present extensive evaluation and com-
pare different types of key usages along with their trade-
offs between security and utility. Approach. Our image
steganography framework, shown in Fig. 1, comprises an
encoder and a decoder implemented using CNN. It utilizes a
shared secret key between the sender and receiver. The encoder
encrypts the secret image using the shared key and embeds it
into the cover image for transmission. The decoder uses the
shared key to decrypt the carrier image and recover the secret
image. We employ various shared keys, including keyed pixel
shuffling, multi-level block shuffling, and a combination of
key concatenation and block shuffling. We train, validate, and
test our model using the Tiny ImageNet [16] dataset for secret
and cover images. Our results demonstrate that the inclusion of
keyed block shuffling in the deep learning-based steganogra-
phy model introduces minimal error overhead while ensuring
secure transmission. It outperforms vulnerable vanilla deep
steganography [5] approaches susceptible to surrogate model
attacks. Our framework is robust against statistical analysis and
steganalysis methods, such as StegExpose [17]. The flexibility
of multi-level block shuffling encryption, adapting its depth
for different secret images, achieves optimal performance in
SecureImgStego.

Contributions. The key research contributions are:
• We expose the inherent vulnerabilities in deep image

steganography, demonstrating real attacks where signif-
icant information about the secret image is disclosed to
an attacker, regardless of their access level to the deep
steganography model (full, partial, or zero).

• We design and develop a deep learning-based image
steganography model, SecureImgStego, for transmitting
secret image data by embedding keyed shuffling en-
cryption into the model architecture. It ensures secure
communication despite the assumption that the adversary
owns a surrogate model of the original one.

• We demonstrate that the proposed keyed shuffling
encryption-based deep image steganography model has
negligible error overhead when compared to the vanilla
deep image steganography models.

• We extensively evaluate SecureImgStego and compare

it with existing methods in terms of human perceptibil-
ity, key sensitivity, adaptivity, cover image availability,
keyspace, and steganalysis robustness.

We organize the rest of the paper as follows. In Section II,
we discuss the related works and identify their limitations.
In Section III, we explain SecureImgStego along with the
threat model. Section IV presents the implementation details.
In Section V, we extensively evaluate SecureImgStego and
report our findings. Finally, we discuss some future research
directions and conclude in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of the key terms
used in steganography and cryptography. We review related
works, highlight their limitations, and conduct a gap analysis
based on the current state-of-the-art research.

A. Background

Steganography conceals confidential data within non-
confidential data to avoid detection by intermediaries. It can
involve various types of data such as text, images, audio, or
video. The process typically involves three components: the
secret object (payload), the cover object, and the carrier object.
The secret object is the information to be hidden, embedded
within the cover object. The carrier object, a combination of
the secret and cover objects, is publicly available and should
visually resemble the cover object to maintain secrecy. Ste-
ganalysis refers to the detection or recovery of the secret object
from the carrier object. In cryptographic systems, encryption
keys are used to secure information. Symmetric cryptography
employs a shared private key for both encryption and decryp-
tion, while asymmetric cryptography uses a public key for
encryption and a private key for decryption. In our work, we
utilize symmetric cryptography for the secure transmission of
the secret object.

B. Related Work

To systematize the diverse steganography research, we cat-
egorize the existing works into three main categories.

Traditional Steganography. Traditional techniques of im-
age steganography utilize different properties of images, e.g.,
histogram, texture, pixel value difference, or least significant
bits [3], [4]. The least significant bits (LSBs) replacement is
the most popular among the practitioners in image steganog-
raphy [18]. In this method, the LSBs of the cover image
are replaced by the bit pattern of the secret message. It
introduces a negligible change in the cover image which is
almost imperceptible to the human eyes. Unfortunately, such
embedding can be identified by leveraging statistical analysis
techniques [9], [10].

Deep Steganography. Automatic feature detection capabil-
ity of deep neural networks has given rise to deep steganogra-
phy. Baluja [5] proposes an end-to-end deep image steganog-
raphy framework that consists of three networks: preparation
network, hiding network, and reveal network. All bits of the
cover image are utilized to hide the secret image in this method
which makes it robust against steganalysis. In another image



steganography technique, Wengrowski et al. [19] focus on
the minimization of camera distortion error by introducing an
additional network named Camera display Transfer Function
(CDTF) besides encoder and decoder. To hide text data,
Tancik et al. [20] encode 56-bit hyperlink bitstrings into im-
ages. Kreuk et al. [21] present Short-Time Fourier Transform
(STFT) and Inverse STFT with vision-oriented models to hide
audio data. In the area of compressed image steganography,
Sarmah et al. [22] use the Cohort Intelligence (CI) algorithm
to reduce computational cost.

Encrypted Steganography. There exists a number of re-
search works [23]–[25] that focus on image cryptography.
Ding et al. [23] propose a cycle GAN-based approach for
medical images where parameters of the network are con-
sidered as key whereas Gilad-Bachrach et al. [24] suggest a
neural network that is specialized to train on encrypted data.
To strengthen data security, various methods use cryptography
and steganography simultaneously. A keyed text steganogra-
phy proposed by Li et al. [11] incorporates key into a model
with concatenation operation and demonstrates that even with
access to the decoding network, an adversary cannot retrieve
the hidden text message from the carrier image if the adversary
does not have access to the exact decryption key. In their
symmetric-key approach, they show an adversary who elicits
secret keys from a uniform random distribution, fails to decode
the hidden text message, and ends up with random strings.
Duan et al. [26] initiate a scheme where image is encrypted at
the pre-processing step with Discrete Cosine Transform (DCT)
and Elliptic Curve Cryptography (ECC) algorithms, then fed
to the pre-trained neural network, and finally, decrypted with a
similar post-processing step. Sharma et al. [12] come up with
an idea of incorporating encryption-decryption layer in deep
steganography where they use a fixed order of pixel shuffling
to encrypt all secret images. With this encryption method, they
show that access to the actual cover image is no longer a
security threat since the difference between cover and carrier
images does not contain the secret image pixels in order.

C. Gap Analysis

Existing image steganography works focus on improving
model architecture but neglect security issues. Adversaries
can train surrogate models and retrieve secret images without
access to the original dataset or knowledge of the model
architecture. Unfortunately, the solution proposed in [11] only
applies to text data and lacks information on extending it to
handle image data. In Section V-E, we demonstrate why the
key concatenation approach fails when dealing with images.
Duan et al. [26] have proposed a keyed steganography, but it is
a time-intensive and arduous approach with asymmetric ECC
and no symmetric keyed solution is mentioned. Moreover,
Baluja [5] has shown that if an adversary has access to the
actual cover image even without the decoding network, it
can partially reveal information about the secret image by
enhancing the difference between the cover and carrier images.
This limitation has been addressed by Sharma et al. [12]
where they hide a scrambled version of the secret image

K

Prep NetKey

Secret
 Image (S)

Shuffled 
Secret Image

Cover Image (C)

Carrier 
Image (C’)

Revealed
Shuffled Secret 

Image

Revealed 
Secret 

Image (S’)

Cover image error
propagation, |C–C’|

Secret image error 
propagation, |S – S’|

Reveal NetHiding Net

Concatenation DeshufflingShuffling

Fig. 2. System architecture of SecureImgStego. All five components, i.e.,
shuffling layer, prep net, hiding net, reveal net, and deshuffling layer, are
trained simultaneously. Hence, during training, the error in the secret image
is propagated into the whole network whereas the error in the cover image is
propagated into the sender portion of the architecture (shuffling layer, prep,
and hiding networks).

into the cover image. However, their model’s constant pixel
scrambling order allows adversaries with a surrogate model to
easily decode the secret image. Furthermore, their approach
is vulnerable to known-plaintext attacks, where obtaining the
scrambling order of one secret image enables the retrieval of
all encoded secret images by the adversary.

Our novel approach introduces a simple, fast, and effective
symmetric keyed shuffling method. It prevents the retrieval
of secret images by adversaries, even if they train surrogate
models or have access to the actual cover image. Furthermore,
we prioritize preserving the utility of the steganography model,
resulting in negligible increase in error overhead compared to
the insecure vanilla deep steganography model [5].

III. PROPOSED SecureImgStego MODEL

In this section, we define the threat model for our
framework, explain the model architecture for keyed image
steganography, introduce various types of keys for secure
encryption of the secret image, and discuss the strengths and
limitations of our proposed SecureImgStego.

A. Threat Model

Considering the varying knowledge and access of real-world
attackers, we classify them into three categories: white-box,
grey-box, and black-box adversaries. The white-box adversary
possesses complete knowledge of the architecture and hyper-
parameters of the vanilla model. The grey-box adversary has
partial knowledge of the model architecture, while the black-
box adversary has no knowledge of it. None of these adver-
saries have access to the original dataset (refer to Section V-A)
Additionally, the adversary owns no access to the keys used in
our shuffling approach. Each <sender, receiver> pair
shares a key that is assumed to be transmitted over a secure
channel beforehand and therefore, the key is not accessible
to the adversary. The carrier image is not transmitted over
a secure channel, and we assume the adversary is a passive
eavesdropper (man in the middle) who can observe the channel



but cannot modify or inject any images. The adversary may
or may not have access to the actual cover image for each
carrier image captured. Some may contend that our threat
model diverges from the traditional concept of steganography,
where the adversary remains unaware of whether an image is
a carrier or unaltered. However, we maintain that assuming
an entirely ignorant adversary is impractical in real-world
scenarios. To support this standpoint, we present compelling
evidence (refer to Section V-B) that even when the adversary
is uncertain about the presence of secret information, they can
employ a deep learning-based surrogate decoder to swiftly
cross-check for the existence of any concealed data within
a short timeframe.

B. System Architecture

We design our deep neural network model for secure
steganography system, SecureImgStego, which mainly con-
sists of two components: an encoder on the sender end and a
decoder on the receiver end. Fig. 2 summarizes the system
architecture of our model. The encoder on the sender end
consists of the following components: a shuffling layer, the
preparation network (prep net), and the hiding network (hiding
net). On the other hand, the decoder on the receiver end
consists of the reveal network and the deshuffling layer.

Encoder: The shuffling layer takes the secret image (S)
and the shared key (K, which represents a shuffling order)
as inputs. We propose multiple shuffling techniques, i.e.,
pixel shuffling, multi-level block shuffling, and finally, a
combination of key concatenation and block shuffling, and
demonstrate their performance comparison in section V. Pixel
shuffling allows both spatial and channel shuffling where
block shuffling allows only spatial shuffling. However, while
pixel shuffling has a fixed level of depth, we can vary the
depth of block shuffling by varying the block size and thus
utilize the flexibility of multi-level block shuffling to minimize
information loss in the reconstructed secret image (S′). Finally,
a combination of key concatenation (similar to [11]) and multi-
level block shuffling is applied to the secret image to further
investigate the combined performance.

The preparation network is a convolutional neural network
which generates high level features from output of the shuf-
fling layer. These high-level features are then embedded within
the cover image (C) to generate carrier image (C ′) using the
hiding network which is also a convolutional neural network.

Decoder: The first component of the receiver end is the
reveal network, implemented with a convolutional neural net-
work as well, which takes the carrier image as input and
extracts the encoded secret image. Finally, the deshuffling
layer uses the shared secret key (specific to a <sender,
receiver> pair) to retrieve the revealed secret image from
the output of the reveal network.

C. Training the Prep, Hiding, and Reveal Networks

To train the convolutional neural networks for the prep,
hiding, and reveal stages, we utilize a subset of the Imagenet
dataset comprising 100000 images. Among these images, we

randomly select 50000 as secret images and the remaining
50000 as cover images. For each secret-cover image pair,
we generate a random shuffling key. Four separate models
are trained using this {K,S,C} dataset, employing different
shuffling techniques: pixel shuffling, one block (1B) shuffling,
four block (4B) shuffling, and eight block (8B) shuffling.
Additionally, we explore the combination of key concatenation
[11] with 8B shuffling. The sizes of the keys for all models
are detailed in Section IV.

The loss over the whole framework is: L(C,C ′, S, S′) =
||C − C ′||+ ||S − S′||. In the proposed framework, the error
in the carrier image compared to the cover image, represented
as ||C−C ′|| , is independent of the reveal network’s weights.
This error is only considered in the prep and hiding networks,
as shown in Fig. 2. On the other hand, the reconstruction
error of the secret image, ||S − S′||, accumulates from all
three networks (prep, hiding, and reveal) and affects the entire
framework. To ensure fairness in comparison, all models
follow the same stopping criterion during training. We train
each model for 50 epochs, as our observations indicate that
the training loss stabilizes after this point.

Once the SecureImgStego model is trained, any <sender,
receiver> pair with a shared secret key can utilize the
model for secure transmission of any secret image. Our
model’s versatility is ensured as the shuffling keys were
randomly generated during training, avoiding overfitting to
a specific shuffling order, unlike Sharma et al. [12]. The
pair can select the appropriate model among the four trained
models with different shuffling techniques, requiring only one
shared key across the models (further details in Section V-F).
Section IV provides comprehensive information about the
convolutional neural network architectures for the prep, hiding,
and reveal networks, as well as details about the employed
shuffling techniques.

D. Discussion and Limitations

With the growing popularity of deep learning-based applica-
tions in our day-to-day activities, it is not surprising that deep
learning-based steganography has now become the state-of-
the-art [5], [7], [8], [11], [12], [12]. However, deep learning-
based solutions are often susceptible to different types of
adversarial attacks [27]. To make matters worse, an adversary
can train a surrogate model with full, partial, or no access to
the original deep steganography model.

Hence, it is important that we integrate enhanced security
techniques with deep learning-based applications, e.g., deep
learning-based image steganography which is used in critical
applications, e.g., in military communications. To the best of
our knowledge, this is the first research work that integrates
symmetric key-based security in image steganography.

The main contribution of our model architecture is ensuring
the requirement that any entity who wants to reveal the
transmitted secret image needs to have access to the secret key.
Any man in the middle attacker without access to the secret
key cannot recover the secret image. According to our model
architecture, even if an attacker has access to the decoder



network (or, a surrogate of the decoder network), the carrier
image can not be successfully deshuffled without the secret key
(see Section V for more details). Moreover, we leverage the
flexibility of multi-level block shuffling encryption to optimize
performance by varying its depth for different images.

Deep learning-based steganography methods lack lossless
communication guarantees, preventing the use of advanced
image encryption techniques. Instead, we employ simple
encryption techniques such as keyed pixel shuffling, multi-
level block shuffling, and a combination of key concatenation
and block shuffling. Hopefully, our work takes the first step
towards making deep learning-based image steganography
secure and functional simultaneously.

IV. IMPLEMENTATION DETAILS OF SecureImgStego

In this section, we discuss the implementation of
SecureImgStego in details. More specifically, we discuss the
dataset, different parameters and sizes of the keys used in
our implementation, and finally, we provide a comprehensive
summary of the architecture.

A. Dataset

The training and testing phases of our work utilize the Tiny-
ImageNet [16] dataset. It consists of 110, 000 color images
with dimensions of {64, 64, 3}. We randomly split the dataset
into a training set of 100, 000 images and a test set of
10, 000 images. Similar to our process for the training dataset
mentioned in Section III-C, we divide the test dataset into
secret and cover images. This ensures unbiased selection of
secret and cover images in both training and testing datasets.

B. Parameter Settings

We use Adam [28] as an optimizer algorithm to update
the model weights during training. The learning rate is set
to 0.001 and the batch size is set to 32. In the case of key
concatenation (similar to [11]), we randomly generate keys of
shape {64,64,3}, i.e., the key size is 12288. For pixel shuffling,
the key is the order of the pixels to be shuffled. Therefore, we
generate keys by taking different permutations of the numbers
in the set {1, 2, . . . , 12288}. Hence, the key size is also 12288.
In the case of block shuffling methods, the key size can be
expressed as p2, where p = image length

block length . For instance, in the
case of 8B shuffling (where p is 64

8 = 8), the key size is (8
× 8) = 64. For key concatenation + 8B shuffling method, the
key size is (8 × 8) + (64 × 64 × 3) or 12352. The security
guarantees for different key sizes are discussed in Section V-J.
We define the depth (d) of block shuffling using the following
formula: d = log2 p. For example, for 4B shuffling (where p
is 64/4 = 16), the depth d is log2 16 = 4. Similarly, for 1B
shuffling d is log2 64 = 6 and for 8B shuffling d is log2 8 = 3.

C. Architecture

Our SecureImgStego architecture is inspired by Baluja [5]
and Sharma et al. [12]. The preparation network is comprised
of 2 convolutional layers with (50, 10, 5) number of filters
having kernel size {3× 3, 4× 4, 5× 5} consecutively. Hiding
network is composed of 6 convolutional layers with (50, 10,

5) number of filters having kernel size {3 × 3, 4 × 4, 5 × 5}
consecutively. Again, the encoder consists of the preparation
and hiding networks. Reveal network is constructed with 6
convolutional layers with (50, 10, 5) number of filters having
kernel size {3 × 3, 4 × 4, 5 × 5} consecutively. These three
networks are trained simultaneously. The operations in the
shuffling and deshuffling layers are just opposite to each
other. Both layers extract blocks from images and order them
according to the provided key using tensorflow operation. Fig.
2 shows how these components interact among themselves to
build SecureImgStego.

D. Block Shuffling Procedure

Formally speaking, we consider an image of dimension
{H × W × C} is divided into some blocks (each block

is denoted by b):

b11 . . . b1k
...

. . .
bk1 . . . bkk

. We then serialize the

blocks in a row-wise fashion:
[
b11 . . . b1k . . . bk1 . . . bkk

]
. We

use the key of the same length to convert this serialization
to a different mapping:

[
b′11 . . . b

′
1k . . . b

′
k1 . . . b

′
kk

]
. After that,

we de-serialize this in a row-wise fashion and construct the

desired shuffled image:

b
′
11 . . . b′1k
...

. . .
b′k1 . . . b′kk

.

To ease the readers about our key usage technique, in this
subsection we provide an illustrative example. For the sake of
simplicity, let’s say we are using 8B shuffling and the image
is of dimension 16× 16× 1 units. So the number of blocks
to be shuffled in this case is 16

8 × 16
8 = 4. Consequently, the

key length is also 4 which consists of unique integers from
1 to 4. Let’s assume, <sender, receiver> pair agrees
on a key {4, 1, 2, 3} for their transmission. At the sender
side, the secret image is shuffled according to the key, and at
the receiver end, the same key is used to recover the actual
secret image. For each shuffling process, first we serialize all
the blocks, and then use the key as a mapping to rearrange the
blocks. At the sender side, equation 2 represents that for each
Ki, Ki-th block should be moved to position i, and similarly
at the receiver end, i-th block should be moved to position Ki.
Fig. 3 visualizes our explanation about the shuffling process.

Fig. 3. Shuffling process illustration

V. EXPERIMENT RESULTS AND ANALYSIS

In this section, we first exhibit the security vulnerabilities in
vanilla deep steganography model by conducting real attacks
that expose confidential data to the adversary. We also present
the experimental results of our different keyed approaches,
comparing their performance in terms of secret image recon-
struction error, difference between carrier and cover images,



computation latency, and human perceptibility. Additionally,
we showcase the robustness of our proposed block shuffling
approach against surrogate model attacks, cover image avail-
ability, steganalysis, and key brute-force attacks.

A. Attack Demos

Our experiment demonstrates that the deep steganographic
model alone is insufficient to guarantee adequate security and
requires encryption as a backup. To address the threat model
defined in Section III-A, we randomly divide our entire dataset
into two equal portions, ensuring zero overlaps between the
training datasets of the vanilla model and the adversary model.
The white-box adversary possesses full knowledge of the
vanilla model but differs from it due to disparities in the
training dataset. The grey-box adversary has partial knowledge
of the vanilla model, specifically the inclusion of prep net,
reveal net, and hiding net components. However, they lack
information about the filter numbers, kernel size, and layer
structures employed in the vanilla model. Consequently, the
grey-box adversary replicates the popular image classification
model architecture, InceptionV3 [29], and utilizes it as the
prep, reveal, and hiding net. The black-box adversary is the
least informed, lacking any knowledge of the three compo-
nents of the vanilla model. Therefore, they mimic another well-
known image classification model, VGG16 [30], duplicating it
to construct a single encoder and decoder. Table I presents the
results of these successful attacks, where the decoded secret
images generated by the three adversaries are conspicuous
enough to reveal the secret information.

TABLE I
ATTACKS IN VANILLA DEEP STEGANOGRAPHY

Secret Image Cover Image Decoded Secret Image

White-box Grey-box Black-box

B. Steganalysis with Deep Steganography

As defined in II-A, steganalysis is the process to label an
image either as a carrier (image containing hidden informa-
tion) or as an unperturbed (image with no hidden information).
In terms of this steganalysis, Baluja [5] demonstrates the
robustness of the deep steganographic method as it succeeds
to dodge a traditional lower bit seeking steganographic tool
named StegExpose [17]. However, we examine that an adver-
sary can achieve the same objective of differentiating between
the carrier and unperturbed image by employing the deep
steganography model itself. For instance, while being unsure
whether an image contains secret information or not, the
attacker can pass the image to a deep steganographic model.
Table II manifests if the input image is an unperturbed one,
its decoded secret image is somewhat meaningless which

ascertains that the input image has no information hidden
in it. On the other hand, in the case of a carrier image, the
adversary will get a meaningful image and thus can conclude
that the image has secret information embedded. It prompts
our thought that an attacker may detect the presence of secret
information in an image quite readily, therefore, the integration
of encryption is necessary to establish the defense-in-depth.

TABLE II
STEGANALYSIS WITH DEEP STEGANOGRAPHY

Input Type Input Image Decoded Secret Image

White-box Grey-box Black-box

Unperturbed

Carrier

C. Performance Analysis

Table III presents quality measures [31] such as RMSE,
SSIM, PSNR, and computation latency for different steganog-
raphy methods. The quality measures are calculated as the
average of 10 runs on the test dataset. 4B and 8B shuffling
methods outperform vanilla deep steganography in terms of
image quality. This is because CNN benefits from additional
block creation, as it convolves around images to learn features
from blocks or clusters of pixels. On the other hand, 1B
and pixel shuffling perform poorly since they scatter pixels
indiscriminately, making it difficult for CNN to extract useful
features. We also compare our methods with key concatena-
tion, an approach used for text data [11], to demonstrate its ap-
plicability to images. While key concatenation performs better
in image quality, Table V shows that it performs unsatisfacto-
rily in decryption. Key Concat + 8B shuffling does not offer
any advantage over 8B shuffling and actually worsens image
quality. We report the encoding-decoding time for the entire
test dataset, which is proportional to the depth of shuffling.
As the depth of shuffling increases, the number of possible
permutations increases, resulting in longer computational time.
Pixel shuffling exhibits the highest latency since it shuffles
both spatial and channel dimensions.

D. Visual Analysis

Table IV shows the visual representation of secret and cover
images before and after encoding along with their amplified
differences. In the cases of [5] and [11], differences between
the original cover and the encoded cover (carrier) images with
5× enhancement reveal the shape of the secret image (i.e.,
the face of a dog in this example). Note that, the results with
key concat [11] is no better than vanilla deep steganography
in terms of concealing the secret image from the difference
between cover and carrier images. In contrast, our keyed
shuffling approaches resolve this issue of leaking secret image
from carrier image. Among all the keyed approaches, pixel
shuffling performs the worst in terms of reconstructing the



TABLE III
COMPARISON AMONG DIFFERENT IMAGE STEGANOGRAPHY APPROACHES IN TERMS OF RMSE, SSIM, PSNR, AND COMPUTATION LATENCY

Method RMSE ↓ SSIM ↑ PSNR ↑ Latency ↓
Secret Cover Secret Cover Secret Cover Encoding Decoding

Vanilla Deep Steganography [5] 8.34 8.59 0.94 0.90 30.23 29.72 5.91 s 4.08 s
Key Concat [11] 5.73 7.28 0.97 0.92 33.39 31.17 6.22 s 4.30 s
Pixel Shuffling 50.71 14.05 0.31 0.89 14.45 25.98 6.83 s 5.04 s
1B Shuffling 10.39 10.87 0.92 0.86 28.76 27.70 6.4 s 4.48 s
4B Shuffling 5.72 8.89 0.96 0.89 33.51 29.37 6.29 s 4.75 s
8B Shuffling 7.07 8.46 0.95 0.90 31.59 29.85 6.16 s 4.30 s

Key Concat [11] + 8B Shuffling 8.33 11.34 0.95 0.90 30.00 27.90 6.40 s 4.48 s

TABLE IV
VISUAL ANALYSIS OF DIFFERENT STEGANOGRAPHY METHODS’

PERFORMANCES

Model Cover Secret
Encoded

Cover
Decoded

Secret
Diff

Cover×5
Diff

Secret×5

Vanilla Deep
Steganography [5]

Key
Concat [11]

Pixel
Shuffling

1B
Shuffling

4B
Shuffling

8B
Shuffling

Key Concat [11]
+8B Shuffling

secret image mainly due to the fact that pixel shuffling
allows both spatial and channel shuffling. More details on the
limitations of pixel shuffling is provided in Section V-C.

TABLE V
EFFECT OF ADVERSARY GENERATED RANDOM KEY

Secret Image Model Carrier Image Revealed Secret Image

With Correct Key With Random Key

Key
Concat [11]

Pixel
Shuffling

1B
Shuffling

4B
Shuffling

8B
Shuffling

Key
Concat [11]+
8B Shuffling

E. Sensitivity to Random Key

As illustrated in Fig. 1, an adversary with access to the
decoder (or, a surrogate of the decoder) cannot retrieve the
original secret image if we design a proper keyed image
steganography. In Table V, we show how the adversary
generated random keys perform in revealing the secret image
when compared to the correct keys. Note that, Key concat [11]
performs poorly in the case of image data although the same
method works for text data. This is because in the text data
when the ASCII value of a character changes from 65 to 64,
the character changes to ‘@’ from ‘A’ whereas in the case of
RGB colored image if the R component changes from 65 to
64, the change is imperceptible to the human eyes. As a result,
the adversary can reveal a blurred version of the secret image
with a random key which compromises security. Although
pixel shuffling performs poorly even with correct key, for all
other shuffling techniques, we can see significant differences
between the secret images revealed with correct and random
keys which demonstrates the security of our proposed models
against an advanced adversary who has white-box access to
the decoder but does not know the correct key.

F. Adaptive Depth for Multi-level Block Shuffling

Our empirical analysis shows that the appropriate level or
depth of block shuffling is highly correlated with the contents
of the secret image. If a secret image contains significant
information after d-depth block shuffling, the sender should
instead use block shuffling with a depth higher than d. As
demonstrated in Table VI, the revealed secret image derived
with a random key in the case of 8B shuffling leaks crucial
information (block at row 1, column 4 almost reveals the
face of the left-most person in the original secret image).
The revealed secret image with a random key in the case of
4B shuffling still reveals human eyes whereas 1B shuffling
(highest depth, d = 6) makes it impossible for the adversary
to comprehend the content of the secret image. However, a
simple analysis of Table III and V reveals that the granularity
of block shuffling results in a trade-off between reconstructed
image quality and security. Hence, the sender can select the
appropriate depth for block shuffling according to the quality
and security requirements of a secret image. Note that, in
our experiments, we collect secret images from the ImageNet
dataset. However, in practice, the sender is free to craft secret
images intelligently so that they can achieve the best of both
image quality and security.



TABLE VI
EFFECT OF DIFFERENT DEPTH VALUES IN MULTI-LEVEL BLOCK

SHUFFLING

Secret Image Model Depth Carrier Image Revealed Secret Image

With Correct Key With Random Key

8B
Shuffling 3

4B
Shuffling 4

1B
Shuffling 6

G. Availability of Cover Image
The deep image steganography method proposed in [5]

requires that the adversary does not have access to the original
cover image. Otherwise, it poses a significant threat that the
secret image could be partially revealed by the adversary by
taking the difference between the original cover image and
carrier image. Results in Table VII confirm this limitation of
[5] since the Diff cover (i.e., ||C − C ′||) with enhancement
partially reveals the secret image (a masked human in this
example). Our keyed shuffling methods do not have such
limitations since no visual information can be retrieved even
in the gray-scale diff enhancement. Therefore, our keyed
shuffling methods are more secure than the previous methods
when the original cover image is available to the adversary.

TABLE VII
EFFECT OF ENCRYPTION

Vanilla Deep Steganography [5] 8B Shuffling

Original Cover Revealed Secret

Encoded Cover Diff Cover

Diff Cover x5 Diff Cover Grey x5

Original Cover Revealed Secret

Encoded Cover Diff Cover

Diff Cover x5 Diff Cover Grey x5

H. Steganalysis
We evaluate the performance of existing and proposed se-

cure deep steganography approaches against steganalysis using
StegExpose [17], a widely used tool [5], [11]. By employing
the default settings of StegExpose, we generate ROC curves,
as depicted in Fig. 4. Our experiments demonstrate that the
introduction of keyed deep image steganography does not
significantly affect the performance of StegExpose compared
to vanilla deep steganography [5] or key concatenation [11].
Thus, our proposed model exhibits similar robustness to other
image steganography approaches against steganalysis.

Fig. 4. Performance of existing and proposed approaches against StegExpose

I. Formal Security Analysis

In our system, the input image size is represented as
H ×W × C, where H, W, and C correspond to image height,
image width, and number of channels, respectively. The num-
ber of blocks to be shuffled is denoted by p, and it is defined by
p2 = H×W

k2 (1). Our SecureImgStego works with both color
images and grayscale images, as it is agnostic to the number
of channels (C is not present in equation 1).

One can argue that using a secure channel always between
a <sender, receiver> pair eliminates the need for our
system. The key size would increase with larger image sizes,
which is a practical concern. However, we defend our design
decision by highlighting that key sharing requires only one-
time communication through a secure channel. Once the key
is shared, the <sender, receiver> pair can exchange
unlimited secret images of the same size using the same key.
SecureImgStego requires only one shared key for each

<sender, receiver> pair while enabling the use of
multiple NB shuffling models for adaptivity (e.g., N = 4 for
4B shuffling). The shared key only needs to be for the model
with the smallest block shuffling. For instance, if a pair has a
shared key of length 4096 for 1B shuffling, it can also be used
for 4B shuffling with an intended key size of 256. The pair
can extract integers 1, . . . , 256 from the original key without
changing their order. Similarly, the pair can derive the key for
8B shuffling (size 64) in a similar manner.

J. Key Space and Security Guarantees

Our system’s key represents the correct position of each
out-of-position block in the secret image. Thus, the key size
is equal to the number of blocks to be shuffled (p2) [eqn 1]. It
is a permutation of unique positive integers from 1 to k2, and
formally: K = {K1,K2,K3, . . . ,Kk2}(2) where Ki ∈ [1, k2]
and each Ki is unique.

Since the key is shared through a secure channel, the only
viable approach for an adversary is a brute-force attack. As the
key is a permutation of length k2!, the adversary would need to
try k2! keys to uncover the actual secret image. This assumes
the adversary has access to an Oracle that can determine the
correctness of the constructed secret image. For non-square
images, we need to carefully choose k to adapt it in our
proposed SecureImgStego. The maximum value k can have
is gcd (H,W ). So, formally, x = gcd (H,W ), and k|x

For 8B shuffling, the key size is 64, which corresponds to
the number of blocks to be shuffled. If the adversary attempts a



brute-force attack to discover the shared secret key, they would
need to test approximately ∼ 1.3 × 1089 combinations. Even
with computing resources capable of testing 1017 keys/sec, it
would take the adversary 4×1064 years to learn the secret key.
In the case of coarser-grained shuffling, such as 16B shuffling,
key size is smaller and the adversary would require less time
to recover the key. In finer-grained shuffling, like 1B shuffling,
where the depth of shuffling is higher and the block length is
lower, the key size is 4096, significantly increasing the number
of key combinations and the time required for the adversary
to learn the key. In summary, the security of our model’s key
is proportional to the depth of block shuffling and inversely
proportional to the block length.

VI. CONCLUSION AND FUTURE WORK
In this paper, we expose the inherent vulnerabilities in

deep steganography through real attack demonstrations. We
propose a keyed image steganography model based on deep
convolutional neural networks, where the encryption layer
incorporates a secret key to enhance network security. Our
model ensures secure communication between sender and
receiver, even in the presence of a surrogate model. We demon-
strate the effectiveness of our provably secure steganography
system in hiding full-size color images while preserving visual
characteristics and maintaining confidentiality, even when the
carrier image is accessible to the attacker. Our findings reveal
the tradeoff between performance and security in different
levels of block shuffling granularity. Future work includes
extending our approach to asymmetric key-based SecureImg-
Stego, exploring applications in audio and video data, and
investigating the hiding of multiple secret images within a
single cover image using SecureImgStego.

REFERENCES

[1] G. C. Kessler, “An overview of steganography for the computer forensics
examiner,” Forensic science communications, vol. 6, no. 3, pp. 1–27,
2004.

[2] G. C. Kessler and C. Hosmer, “An overview of steganography,” in
Advances in Computers. Elsevier, 2011, vol. 83, no. 2, pp. 51–107.

[3] B. Li, J. He, J. Huang, and Y. Q. Shi, “A survey on image steganography
and steganalysis,” Journal of Information Hiding and Multimedia Signal
Processing, vol. 2, no. 2, pp. 142–172, 2011.

[4] M. S. Subhedar and V. H. Mankar, “Current status and key issues in
image steganography: A survey,” Computer science review, vol. 13, pp.
95–113, 2014.

[5] S. Baluja, “Hiding images in plain sight: Deep steganography,” in
Advances in Neural Information Processing Systems, Long Beach, CA,
USA, Dec 4-Dec 9 2017, pp. 2069–2079.

[6] P. Wu, Y. Yang, and X. Li, “Stegnet: Mega image steganography capacity
with deep convolutional network,” Future Internet, vol. 10, no. 6, p. 54,
2018.

[7] X. Duan, K. Jia, B. Li, D. Guo, E. Zhang, and C. Qin, “Reversible
image steganography scheme based on a u-net structure,” IEEE Access,
vol. 7, no. 6, pp. 9314–9323, 2019.

[8] N. Khan, R. Haan, G. Boktor, M. McComas, and R. Daneshi, “Steganog-
raphy gan: Cracking steganography with cycle generative adversarial
networks,” arXiv preprint, vol. arXiv:2006, no. 8, 2020.

[9] J. Fridrich and M. Goljan, “Practical steganalysis of digital images: state
of the art,” in Security and Watermarking of Multimedia Contents IV,
vol. 4675, no. 1. International Society for Optics and Photonics, 2002,
pp. 1–13.

[10] H. Ozer, I. Avcibas, B. Sankur, and N. D. Memon, “Steganalysis of
audio based on audio quality metrics,” in Security and Watermarking
of Multimedia Contents V, vol. 5020, no. 2. International Society for
Optics and Photonics, 2003, pp. 55–66.

[11] Z. Li, G. Han, S. Guo, and C. Hu, “Deepkeystego: Protecting commu-
nication by key-dependent steganography with deep networks,” in 2019
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2019, pp. 1937–1944.

[12] K. Sharma, A. Aggarwal, T. Singhania, D. Gupta, and A. Khanna,
“Hiding data in images using cryptography and deep neural network,”
arXiv preprint arXiv:1912.10413, 2019.

[13] S. Bharti, S. Behal, and V. Sharma, “Security enhancements for high
quality image transaction with hybrid image steganography algorithm,”
in 2018 Second International Conference on Computing Methodologies
and Communication (ICCMC). IEEE, 2018, pp. 162–169.

[14] X. Duan, D. Guo, N. Liu, B. Li, M. Gou, and C. Qin, “A new high
capacity image steganography method combined with image elliptic
curve cryptography and deep neural network,” IEEE Access, vol. 8, pp.
25 777–25 788, 2020.

[15] S. E. El-Khamy, N. O. Korany, and A. G. Mohamed, “A new fuzzy-dna
image encryption and steganography technique,” IEEE Access, vol. 8,
pp. 148 935–148 951, 2020.

[16] “Tiny imagenet,” http://cs231n.stanford.edu/tiny-imagenet-200.zip, ac-
cessed: 2022-09-01.

[17] B. Boehm, “Stegexpose-a tool for detecting lsb steganography,” arXiv
preprint arXiv:1410.6656, 2014.

[18] D. Neeta, K. Snehal, and D. Jacobs, “Implementation of lsb steganog-
raphy and its evaluation for various bits,” in 2006 1st International
Conference on Digital Information Management. IEEE, 2006, pp. 173–
178.

[19] E. Wengrowski and K. Dana, “Light field messaging with deep pho-
tographic steganography,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, Jun
16-jun 20 2019, pp. 1515–1524.

[20] M. Tancik, B. Mildenhall, and R. Ng, “Stegastamp: Invisible hyperlinks
in physical photographs,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPRVirtual, Jun 16-jun
18 2020, pp. 2117–2126.

[21] F. Kreuk, Y. Adi, B. Raj, R. Singh, and J. Keshet, “Hide and speak:
Deep neural networks for speech steganography,” arXiv preprint, vol.
arXiv:1902, no. 83, 2019.

[22] D. K. Sarmah and A. J. Kulkarni, “Improved cohort intelligence—a
high capacity, swift and secure approach on jpeg image steganography,”
Journal of information security and applications, vol. 45, no. 3, pp.
90–106, 2019.

[23] Y. Ding, G. Wu, D. Chen, N. Zhang, L. Gong, M. Cao, and Z. Qin,
“Deepedn: A deep-learning-based image encryption and decryption
network for internet of medical things,” IEEE Internet of Things Journal,
vol. 8, no. 3, pp. 1504–1518, 2021.

[24] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International Conference on
Machine Learning. PMLR, 2016, pp. 201–210.

[25] F. Hu, J. Wang, X. Xu, C. Pu, and T. Peng, “Batch image encryption
using generated deep features based on stacked autoencoder network,”
Mathematical Problems in Engineering, vol. 2017, 2017.

[26] X. Duan, D. Guo, N. Liu, B. Li, M. Gou, and C. Qin, “A new high
capacity image steganography method combined with image elliptic
curve cryptography and deep neural network,” IEEE Access, vol. 8, pp.
25 777–25 788, 2020.

[27] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security
and privacy in machine learning,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS P), 2018, pp. 399–414.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[29] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” 2015.
[Online]. Available: https://arxiv.org/abs/1512.00567

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available: https:
//arxiv.org/abs/1409.1556

[31] U. Sara, M. Akter, and M. S. Uddin, “Image quality assessment through
fsim, ssim, mse and psnr—a comparative study,” Journal of Computer
and Communications, vol. 7, no. 3, pp. 8–18, 2019.


